|
程正雪专职科研
地址:上海市东川路800号电信群楼5-315
电话:
邮箱:zxcheng@sjtu.edu.cn
研究中心:图像通信研究所
个人主页:https://medialab.sjtu.edu.cn/author/zhengxue-cheng
|
个人简介
程正雪,工学博士。2014年获得上海交通大学电子信息与电气工程学院信息工程专业学士学位,通过上海交大-早稻田大学的双硕士项目分别在2015年和2017年获得双硕士学位,2018年10月作为访问学者在瑞士洛桑联邦理工实习,参与JPEG-AI标准化活动。2020年获得日本早稻田大学信息理工与信息通信专业工学博士学位。2020年至2024年在浙江省杭州市蚂蚁集团(支付宝)公司担任算法专家,落地多项AI算法。后作为专职科研加入上海交通大学电子系图像所。目前已作为第一作者或通讯作者发表多篇CCF-A类或高水平期刊论文,引用次数一千余次,曾获得日本学术振兴会JSPS若手DC2特别研究员、国家奖学金、上海市优秀毕业生、日本IPS奖学金、电气通信财团最佳论文奖、杭州市E类人才等一系列荣誉。
研究领域
研究方向
1. 图像视频语音的智能压缩;
2. 图像视频语音的处理与增强;
3. AI算法轻量化;
获奖情况
1. 日本电气通信财团2019年最佳论文奖
2. PCS2019 Grand Challenge银奖
3. 端侧视频超分应用获华为开发者大会2021年璀璨星光奖
重要论文
-
Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto, “Learned Image Compression
with Discretized Gaussian Mixture Likelihoods&Attention Modules”, CVPR 2020.
-
Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto, “Learning Image and Video
Compression through Spatial-Temporal Energy Compaction”, CVPR 2019.
-
Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto, “Energy Compaction-Based
Image Compression Using Convolutional AutoEncoder”, Vol.22, No.4, pp.860-873, IEEE Trans.
on Multimedia, April 2020
-
Heming Sun, Zhengxue Cheng, Masaru Takeuchi, Jiro Katto, “Enhanced Intra
Prediction for Video Coding by Using Multiple Neural Networks”, Vol.22, No.11, pp.2764-
2779, IEEE Trans. on Multimedia, Nov. 2020
-
Heming Sun, Zhengxue Cheng, Amir Masoud Gharehbaghi, Shinji Kimura, Masahiro
Fujita, “Approximate DCT Design for Video Encoding based on Novel Truncation Scheme”,
IEEE Trans. on Circuits and Systems (TCAS) I: Regular Papers, Vol 66, No. 4, April. 2019.
-
Liang Qian, Zhengxue Cheng, Zheng Fang, Lianghui Ding, Feng Yang, Wei Huang, “A
QoE-Driven Encoder Adaptation Scheme for Multi-User Video Streaming in Wireless
Networks”, IEEE Trans. on Broadcasting (TBC), Vol. 63, No. 1, pp. 20-31, March, 2017.
-
Zhengxue Cheng, et al., “Learned lossless image compression with a hyperprior and
discretized gaussian mixture likelihoods”, ICASSP 2020. (CCF-B)
-
Zhengxue Cheng, Pinar Akyazi, Heming Sun, Jiro Katto, Touradj Ehrahimi, “Perceptual
Quality Study on Deep Learning based Image Compression”, Intl Conf. on Image Processing
(ICIP), Taipei, Taiwan, Sep. 22-25, 2019.
-
Marcos V. Conde, et al. Zhengxue Cheng, “Efficient Deep Models for Real-Time 4K Image
Super-Resolution”, CVPR 2023 NTIRE Workshop (entry: AGSR)
-
Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto, “Deep Residual Learning for
Image Compression”, CVPR 2019 CLIC Workshop 2019. (entry: Kattolabv2)
-
Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto, “Deep Convolutional
AutoEncoder-based Lossy Image Compression”, PCS 2018